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Abstract: Theoretical guarantees for causal inference using pro-
pensity scores are partially based on the scores behaving like con-
ditional probabilities. However, prediction scores between zero and 
one do not necessarily behave like probabilities, especially when 
output by flexible statistical estimators. We perform a simulation 
study to assess the error in estimating the average treatment effect 
before and after applying a simple and well-established postpro-
cessing method to calibrate the propensity scores. We observe that 
postcalibration reduces the error in effect estimation and that larger 
improvements in calibration result in larger improvements in effect 
estimation. Specifically, we find that expressive tree-based estima-
tors, which are often less calibrated than logistic regression-based 
models initially, tend to show larger improvements relative to logistic 
regression-based models. Given the improvement in effect estimation 
and that postcalibration is computationally cheap, we recommend its 
adoption when modeling propensity scores with expressive models.

Keywords: Average treatment effect; Causal inference; Calibration; 
Model validation; Propensity score
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The propensity score is defined as the conditional proba-
bility of being assigned to a treatment (exposure) given 

one’s observed confounding variables. It is commonly used 
in methods for estimating causal effects from observational 
data, such as inverse probability weighting (IPW),1 propen-
sity matching,2,3 propensity stratification,4 and doubly robust 
methods.5–8

Rosenbaum and Rubin2 identified theoretical guaran-
tees that ensure that adjusting for the propensity score, instead 
of the covariates themselves, is sufficient for achieving the 
conditional exchangeability required for estimating a causal 
effect. Namely, they ensure that conditioning on the propen-
sity scores obtained from a set of confounding variables is as 
good as conditioning on the confounding variables themselves 
for removing confounding bias. Specifically, these theoretical 
guarantees require the propensity scores to be the true condi-
tional probabilities (see also eAppendix; http://links.lww.com/
EDE/C136). In practice, however, not every model that inputs 
data and outputs a number between zero and one correctly 
estimates true probabilities. Therefore, the obtained propen-
sity scores might not represent true probabilities reliably.

A prediction model that outputs probabilities accurately 
is referred to as calibrated (note that this is unrelated to a pre-
vious notion of “propensity score calibration” by Stürmer et 
al.9) Specifically, in this article we focus on the notion of mod-
erate calibration,10 where the observed rate of events should 
equal the predicted rate among samples with a similar pre-
dicted score. Formally, an estimated model f̂  that regresses a 
binary variable A on covariates X  and produces probabilistic 
predictions f̂ (X ) = π̂ is considered well-calibrated if it sat-
isfies E[A = 1|π̂] = π̂. To illustrate this notion, if we take all 
the observations for which the model predicted a score of 0.8, 
about 80% of them should have a positive label. Calibration 
can be empirically evaluated with a calibration curve (reliabil-
ity diagram), comparing the predicted scores with their corre-
sponding label rates for a range of scores.11 However, because 
an entire curve is not always actionable, there are multiple 
metrics that try to capture this notion with a single numeric 
value.12–14

While studies using propensity-based methods might 
check for overlapping propensity distributions or covariate 
balancing,15–17 it is somewhat uncommon for them to evaluate 
their propensity scores for calibration. Fortunately, because 
the majority of classical statistical literature estimates pro-
pensity scores using logistic regression models, those stud-
ies may have inadvertently overcome the need. Logistic 
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regression models are fitted by optimizing the log-loss 
objective function (binary cross-entropy, negative Shannon 
entropy),18,19 which is, by itself, a metric for calibration.20 
Additionally, its logit link function is the canonical link func-
tion for its log-loss and thus results in the balance property[21 
Chapter 5]. Therefore, a well-specified logistic regression is nor-
mally well-calibrated.

However, not all statistical estimators are inherently cal-
ibrated. Models of higher complexity, such as tree-based or  
neural-network-based models, may not be calibrated out of the 
box, like logistic regression. Even regularizing logistic regression 
(least absolute shrinkage and selection operator [LASSO], ridge 
regression, or elastic-net models) could harm calibration, as the 
penalty added moves the objective function away from the “pure,” 
calibrating log-loss.22,23 As these models become more popular 
for propensity estimation,24 it is worth investigating if calibration 
of propensity models is beneficial for effect estimation.

Furthermore, it is of interest to explore if we can break 
down the trade-off between model expression and calibration 
by postcalibrating estimators. Therefore, postcalibration may 
hold promise for using complex high-dimensional data for 
propensity score estimation when performing causal inference 
from observational data.

In this article, we use simulations to quantify the down-
stream effect of poorly calibrated conditional probabilities 
on the estimation of causal effects. We hypothesize that well- 
calibrated propensities are indeed imperative for estimating 
causal effects properly and that in cases where calibration is 
poor, effect estimation will be improved by postcalibrating the 
propensity models.

METHODS
To assess the importance of calibration, we use sim-

ulations so we have access to individual-level propensity 
scores and counterfactual outcomes. Below, we describe the 
data-generating processes used, the effect estimation methods, 
and the measurements obtained from the various estimations.

Causal Inference Framework
We denote the binary treatment assignment for 

each individual i as Ai, the covariates (ideally confound-
ing variables) as Xi, and the true propensity to be treated as 
πi = Pr[Ai = 1|X = xi]. Using Rubin’s potential outcomes 
framework,25 we denote Y 1

i  as the hypothetical outcome that 
would have been observed had individual i been treated, and 
similarly, Y 0

i  as the hypothetical outcome that would have 
been experienced had they not been treated. Then, assum-
ing causal consistency, the observed outcome is defined as 
Yi = AiY 1

i + (1 − Ai)Y 0
i . Finally, we define the average treat-

ment effect (ATE) as E[Y 1
i − Y 0

i ].

Estimation
To estimate the causal effect from the observed data, 

we first estimate the propensity score, denoted as π̂, by 

regressing the treatment assignment on the covariates. We fit 
various estimators that are common in the literature: logistic 
regression, regularized logistic regression—LASSO26 and 
ridge,27 random forest,28 and gradient boosting trees (addi-
tive trees).29 Briefly, LASSO and ridge penalize the logistic 
regression coefficients using L1 and L2 norms, respectively; 
a random forest aggregates multiple decision trees fitted 
on different bootstrap samples of the dataset; and a gradi-
ent boosting trees algorithm adds up a sequence of decision 
trees.

Because these estimators require hyperparameters, we 
perform a hyperparameter search using cross-validation. For 
the tree-based models, we search over maximal tree depth 
and number of trees in the ensemble. For regularized logis-
tic regression models we search over regularization (penalty) 
strength. To elicit calibration, we select the configuration that 
minimizes the Brier score.30 Brier score is defined as the mean 
squared error between the predicted probabilities and the 
binary outcome variable. It can be used to assess the accuracy 
of probabilistic predictions and, if optimized, can be used as a 
calibration-inducing metric.

To avoid overfitting, the propensity scores are predicted 
on unseen data points using cross-validation. Hence, a nested 
cross-validation approach is taken: inner cross-validation 
is used for hyperparameter optimization, and outer cross- 
validation is used for propensity score prediction and subse-
quent effect estimation.

Once propensity scores,π̂i, are obtained, we plug them 
into an IPW estimator31 to estimate the ATE in a sample of 
size n, defined as ‘ATE = 1

n

∑n
i=1 yi

Ä
ai
π̂i
− 1−ai

1−π̂i

ä
. The eAp-

pendix; http://links.lww.com/EDE/C136 contains additional 
results obtained by estimating the effect using propensity 
score matching and propensity score stratification.

Postcalibration
Optionally, we can postprocess the predicted propensity 

scores by calibrating them before using them with IPW. There 
are multiple methods for performing this postcalibration that 
should result in scores functioning more like probabilities. 
In this study, we focus on Platt’s correction,32 as it is most 
appropriate for our data-generating process. The method takes 
advantage of the well-calibrated properties of log-loss by fit-
ting a logistic regression over the scores outputted from an 
estimator against the treatment assignment labels. Formally, 
it models logit (Pr [Ai = 1|π̂i]) = η0 + η1π̂i, where A denotes 
the binary treatment assignment and π̂ the (uncalibrated) esti-
mated propensity scores.

Measurements
For each set of propensity scores and postcalibrated pro-

pensity scores, we take three main measurements.
First, we measure the calibration error. This is done graph-

ically with calibration curves and numerically with the integrated 
calibrated index (ICI).14 Calibration curves present the notion of 

http://links.lww.com/EDE/C136
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empirical calibration. It bins the predicted scores and counts the 
positive and negative labels in each bin. A well-calibrated model 
will have the same rate of observed labels as the average score of 
a bin, thus resulting in a diagonal line along the x=y curve. ICI is 
a way to extract a numeric value from the notion of the diagonal 
calibration curve. It fits a locally estimated scatterplot smoothing 
regression between the binary classes and the predicted scores, 
calculates the difference between the resulting predicted line and 
the optimal x=y diagonal, and takes the mean of the absolute of 
those differences.

Second, we measure the effect estimation error. The pro-
pensity scores are transformed into inverse propensity weights 
and the ATE is estimated (‘ATE). We further define the ground 
truth ATE as the difference between the means of the simu-
lated potential outcomes 1n

∑n
i=1 y1

i − y0
i  in a sample of size n. 

The estimation error is then defined as the absolute difference 
between ATE and ‘ATE.

Third, we measure the covariate balance between the 
treatment groups. We calculate the absolute standardized mean 
difference after inverse propensity weighting for each covari-
ate and then select the maximum value over all covariates.

DATA
Simulation Data

To estimate the effect of miscalibration on effect estima-
tion, we first use an estimation-free propensity score simula-
tion. We apply the following simple data-generating process:

Y = 5A + 1.2X1 + 3.6X2 + 1.2X3 + 1.2X4 + ε

A ∼ Bernoulli(π)
logit(π) = γ(−0.1X1 + 0.05X2 + 0.2X3 − 0.05X4 + ε′)

X1, X2, X3, X4 ∼ Normal(0, 32
)

ε, ε′ ∼ Normal(0, 0.52
)

γ ∈ [0, inf ]

We set γ = 1 while generating the data. We imitate uncali-
brated models by purposefully decalibrating the true propen-
sity scores. We do so by multiplying logit(π) by different γ  
values in the range of [0.125, 3], which changes the shape of 
the propensity score distribution. For each γ  value, we gener-
ate 10 repetitions, each of n = 10,000 observations.

We also use data from the γ = 1 setting when fitting the 
statistical estimators whose results appear in the eAppendix; 
http://links.lww.com/EDE/C136.

ACIC 2016 data
To estimate the impact of postcalibration on different 

statistical estimators in a more realistic scenario, we use a 
more complex data generation process from the 2016 Atlantic 
Causal Inference Conference (ACIC) Data Challenge. The 
data is semi-synthetic and is based on real covariates from 
the Collaborative Perinatal Project longitudinal study that are 
used to synthetically simulate both treatment assignments and 
potential outcomes. There are multiple generating processes 

and multiple realizations for each process, but each dataset 
has the same 4802 observations of the same 58 covariates.

Both the treatment assignment mechanism and the out-
come response surface were generated using two separate 
“generalized additive functions,” which are the functional 
generating process corresponding to generalized additive 
models (GAMs).33 For example, two covariates X1, X2 can 
be combined as f (X1, X2) = f1(X1) + f2(X2) + f3(X1)f4(X2), 
with fk  being either an indicator function, a sum over a poly-
nomial of a random degree, or a step function of a randomly 
chosen threshold. For the treatment mechanism, an additional 
inverse logit link function was applied to bound the propensity 
scores between zero and one, from which a binary treatment 
assignment was drawn using a Bernoulli distribution. Last, 
only a random subset of the 58 covariates was used; thus, all 
confounding variables were observed, but not all covariates 
were confounding variables (i.e., affecting both the exposure 
and the outcome). Full details on the data-generating process 
can be found in Dorie et al.34

Using generalized additive functions creates highly flex-
ible nonlinear response surfaces for the treatment mechanism 
and the potential outcomes, which can make estimation chal-
lenging. For this study, we selected five instances of a single 
data-generating process (numbered 42) that has a polynomial- 
based treatment model and a step-based potential outcomes 
model. This creates heterogeneity in the treatment effect and 
increases the chances that the models applied to the data will 
be ill-specified.

As mentioned above, in each of the five instances we 
obtain the propensity scores for each statistical model, use 
them to estimate the average causal effect with IPW, and take 
multiple measurements (e.g., calibration error and estimation 
error). We then postcalibrate the propensity scores and repeat 
the process.

RESULTS

Estimation-free Propensity Scores
In the first experiment, we check the impact of calibra-

tion on the downstream effect estimation by simulating syn-
thetic treatment assignment and potential outcomes. We take 
the true propensities to treat and gradually decalibrate them by 
scaling them in logit space. We first use the decalibrated pro-
pensities to estimate the effect of IPW. Then we recalibrate the 
decalibrated propensities using Platt’s correction32 and reesti-
mate the treatment effect. This allows us to examine the down-
stream effect of decalibration and postcalibration in a tightly 
controlled setting with dose-response-like intervention while 
holding many other “real-world” degrees of freedom constant.

Figure 1A shows that the error in effect estimation 
increases with the magnitude of the decalibration of the true 
propensity to treat. Specifically, it shows that before calibra-
tion (square markers) stronger deformation (darker colors) 
leads to larger errors (increase in the y-axis). It further shows 

http://links.lww.com/EDE/C136
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that recalibration (circle markers), reduces effect estimation 
error, meaning that the ATE is more accurate. eFigures 1, 2, 
and 3; http://links.lww.com/EDE/C136 present additional 
points of view and gradual construction of this plot.

We can further quantify this improvement by calcu-
lating the average slopes between the decalibrated and the 
recalibrated points on the plane stretched by the calibration 
error and the effect estimation error. eTable 1; http://links.lww.
com/EDE/C136 shows the following for 1000 repetitions per 
deformation scale: First, the magnitude of the slope increases 
with the strength of the decalibration. Second, the sign of the 
slope is consistently negative, meaning postcalibration con-
sistently reduces both the calibration error and the effect esti-
mation error.

To better understand the decalibration and recalibra-
tion process, we can take a deeper look into the actual cali-
bration curves of one instance for each deformation scale. In 
calibration curves, we bin the predicted probabilities into 10 
bins and compare the rate of observed events in each bin. For 
well-calibrated models, we expect to see π̂% of events among 
samples with a predicted propensity of π̂%, aligning with the 
x=y diagonal. Figure 2 shows the effect of the deformation 
on the distribution of propensities and calibration curves. The 

deformation magnitude controls the kurtosis of the propen-
sity distribution, with small values leading to high kurtosis 
and large values leading to uniformly-looking, low kurtosis 
propensity distributions. It also shows that as deformation 
magnitude increases, that is, moves further away from 1, cali-
bration indeed deteriorates (orange line), moving further away 
from the x=y diagonal (dashed line). However, correcting it 
with postcalibration (green line) improves calibration, getting 
it closer to the diagonal and the curve determined by the true 
propensity scores (blue line) and the optimal diagonal (dashed 
line).

The distribution of propensity scores under different 
γ  values can explain the estimation bias in the uncalibrated 
results. As γ  gets very small, the propensity scores cluster 
towards 0.5. As a result, the IPW estimator collapses to a dif-
ference in the means estimator, which is biased because of the 
large covariance between the propensity scores and the poten-
tial outcomes. As γ  gets very large, the propensity scores are 
pushed out to be very close to 0 and 1, which means the IPW 
estimator overweighs a handful of treated points with propen-
sities near 0 and control points with propensities near 1, and 
relatively ignores the other points in between. The resulting 
estimator has a very high variance due to the extreme weights, 

FIGURE 1. Postcalibration improves effect estimation. Using synthetic data with known effect sizes and propensities-to-treat, we 
plot the errors in effect estimation (y-axis) and calibration (x-axis) before (rectangular markers) and after (circles) postcalibration 
with arrows connecting corresponding pairs. In the left panel, propensity scores are deformed to decalibrate them and are then 
recalibrated using Platt’s correction. The magnitude of the deformation—evaluated at γ = 0.25, 0.5, 0.75, 1, 1.5, 1.75, and 2— 
is coded by color (the farther the value from 1, the greater the deformation is and the darker its color). Before postcalibration 
(rectangles), the greater the propensity deformation (darker color), the greater the calibration and the effect estimation errors 
are. After postcalibration (circles), both the calibration error (mean integrated calibrated index) and the average treatment effect 
estimation error (the absolute difference between the true and the estimated effect) decrease. In the right panel, propensity scores 
are estimated using different statistical estimators (color-coded) on a dataset from the 2016 Atlantic Causal Inference Conference 
Data Challenge. Again, we see that postcalibrated propensity scores reduce calibration error and achieve smaller effect estimation 
error overall.

http://links.lww.com/EDE/C136
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which explains the wide spread of the effect estimation error 
values for the boxes with large calibration deformation values.

Model-estimated Propensity Scores
In the second experiment, we examine the effect of 

postcalibrating different propensity estimators on the effect 
estimation, using more complex semi-synthetic data. We fit 
different propensity models using random forests, gradient 
boosting trees (additive trees), logistic regression, and regu-
larized logistic regressions (LASSO and ridge), and use IPW 
to reweigh the outcomes to obtain an ATE estimation. We 
measure the calibration error and the effect estimation error, 
then postcalibrate the propensity scores and measure again. 
Figure 1B shows that postcalibration consistently reduces the 
error between the true and the estimated ATE.

The calibration curves from one instance of the ACIC 
data-generating process, shown in Figure 3, tell a similar yet 
less decisive story than the model-free propensity simulation 

in Figure 2 (and the model-based results applied on the sim-
pler data in eFigure 5; http://links.lww.com/EDE/C136). We 
first note that the distribution of the true propensity scores 
(blue lines) is skewed and has sparse tails. This increases 
the variance in the extreme bins, resulting in more off-the- 
diagonal behavior at the tails relative to the center of mass. 
Consequently, out of the box, the models (orange lines in each 
panel) are not very calibrated and diverge from the x=y diag-
onal (dashed line). However, postcalibrating the propensity 
scores does improve calibration (green line), especially for the 
tree-based models, and moves the curve closer to the diagonal. 
The only small exception is the left tail of the tree-based mod-
els, which stretches further to the left and is therefore more 
prone to variance due to sparsity.

DISCUSSION
We performed a simulation study to assess the effect 

of post-calibrating propensity scores on the downstream 

FIGURE 2. The greater the decalibration, the greater the deviation from the optimal x=y diagonal of the calibration curves. This 
figure shows the distribution of the propensity scores and the calibration curves for different deformation scales. The greater the 
deformation (the farther the scale value γ is from 1), the greater the deviation from the diagonal (orange line). Postcalibrating 
the scores results in a calibration curve (green) closer to the curve defined by the true (before deformation) curve (blue), which is 
very close to the optimal diagonal curve (dashed line).

http://links.lww.com/EDE/C136


Copyright © 2024 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

 Epidemiology • Volume 35, Number 4, July 2024

478 | www.epidem.com © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

Gutman et al.

estimation of causal effects. We show that miscalibration of 
propensity score models results in poor effect estimation and 
that postcalibrating models improve the treatment effect esti-
mated via IPW.

We rely on simulated data because we need access to 
two variables that are normally unobserved. The first variable 
is the individual’s true propensity to be treated. The second 
variable is the counterfactual outcomes, which is necessary 
for calculating the true ATE and comparing it to the estimated 
effect.

Postcalibration is the process of transforming the scores 
provided by an estimator so that they behave more like prob-
abilities. Overall, when used for inverse weighting, postcal-
ibrating propensity scores have consistently improved effect 
estimation by reducing estimation bias. Figure 1A shows this 
in a theoretical scenario, where the true propensity scores are 
gradually deformed and then recalibrated. This process allows 
us to perform a tightly controlled dose-response-like analy-
sis, which demonstrates two key points. First, the stronger we 
deform and decalibrate the propensity scores, the more biased 
the effect estimated by using them is. Second, postcalibrating 

these decalibrated propensity scores leads to a more accurate 
effect estimation.

Figure 1B (and, to a lesser extent, eFigure 4; http://links.
lww.com/EDE/C136) shows the same conclusion in a more 
realistic scenario where actual statistical estimators are used. 
Mainly, we see that not all estimators are properly calibrated 
out-of-the-box and that postcalibrating them improves down-
stream effect estimation. Additionally, because the functional 
form of the treatment assignment and potential outcomes in 
the ACIC data is a complex set of generalized additive func-
tions, the models used for estimation are practically mis-
specified. Yet, although this misspecification can introduce 
information bias, postcalibration still proves beneficial, and 
consistently so, in terms of effect estimation. This benefit, 
however, does not extend to more extreme cases where uncon-
foundedness does not hold at all (see eFigure 8a; http://links.
lww.com/EDE/C136). But in more relaxed settings, where 
instead of removing a variable we just add additional noise 
to it—adjusting for a proxy variable—we regain that added 
benefit from calibration (eFigures 8b and 8c; http://links.lww.
com/EDE/C136).

FIGURE 3. Calibration curves of different models on a single ACIC dataset. The true simulated propensity scores (blue) do not lie 
on the optimal x=y diagonal since the tails of the distribution are thin and the variance is high. Original scores from the estimators 
(orange) lie farther from the diagonal because they are estimated by a binary instantiation of the true propensities. Post-calibrated 
scores (green) are slightly closer to the diagonal, relative to the original scores, as expected. This effect is more prominent for the 
tree-based models and less prominent for the logistic regression-based models.

http://links.lww.com/EDE/C136
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We hypothesize that the general improvement in 
effect estimation is mediated by improvement in balancing. 
The mathematical argument in the eAppendix; http://links.
lww.com/EDE/C136 demonstrates that the true conditional 
probabilities to be treated are the best choice for inverse 
probability weights. Thus, improving calibration improves 
weighting and subsequently improves effect estimation. 
Optimizing for calibration may therefore be a more sound 
approach than optimizing directly for balancing, because 
some metrics may be an imperfect proxy for balancing (see 
the eAppendix; http://links.lww.com/EDE/C136 for further 
discussion on the common standardized mean difference) 
and optimizing for them directly may lead to suboptimal 
effect estimation.

Not all models benefit the same from postcalibra-
tion. Logistic regression and its regularized variants tend to 
improve less than their tree-based counterparts. This phenom-
enon is in line with regression-based models being more cal-
ibrated to begin with by minimizing the log-loss or a biased 
(i.e., penalized) log-loss. However, tree-based models seem to 
benefit substantially, with some instances achieving a smaller 
error after calibration compared with the logistic regression- 
based models. This seems to break the trade-off between 
model expressiveness and model calibration, allowing both to 
exist simultaneously. This also supports the claim that if more 
expressive models are required for modeling the exposure, 
they are more likely to benefit from postcalibration.

Furthermore, estimators—especially complex ones—
are sensitive to underfitting and overfitting. Underfitted 
propensity models fail to capture the signal of the treatment 
assignment mechanism, resulting in their propensity scores 
being less informative, to begin with, and therefore might 
not benefit from postcalibration compared with models 
that are specified properly. Conversely, overfitted propen-
sity models predict treatment assignment so well that the 
distribution of their scores differs across treatment groups, 
making overfitted models indistinguishable from positivity 
(overlap) violations, hence preventing us from converting 
our statistical estimations into causal claims. However, 
these issues are not unique to propensity score models but 
apply to general prediction models as well, and they can 
be partially automated through hyperparameter search and 
cross-validation.

Beyond the underlying estimators used to obtain 
propensity scores, there are also various ways to use pro-
pensity scores for adjustment. Three such main ways are 
through matching, stratification, and weighting. In this 
study, we focused on IPW because it provides a smoother, 
more continuous transformation of the propensities. We 
observed that this sensitivity to the continuous values of 
the propensity is what drives the change in estimates. eFig-
ures 6 and 7 in the eAppendix; http://links.lww.com/EDE/
C136 show the results using propensity score matching and 
stratification that lead to no change in estimation error. The 

main reason is that calibration is a monotonic function of 
the propensity scores, which scales and shifts all scores—
of both treatment and control units—similarly. In match-
ing, this results in the same nearest neighbors before and 
after calibration. Similarly, in quantile-based stratification, 
because the transformation is monotonic, it preserves the 
order (ranking) of the propensity scores, and therefore the 
units fall to the same quantiles before and after calibration. 
For fixed-interval (non-quantile) binning, there are small 
random changes for those units whose scores are closer to 
the bins’ edges, which can make the calibration tip them 
onto the neighboring bin. More details on this result can be 
found in the eAppendix; http://links.lww.com/EDE/C136.

The Fundamental Problem of Causal Inference35—the 
fact we cannot observe counterfactual outcomes and there-
fore can never have ground truth causal effects—requires 
us to make use of simulations for this study. Therefore, the 
extent to which our conclusions generalize is also dependent 
on how much the properties of these simulated data do exist 
in real data and is thus the reason why we show results for 
both a simple case and a complex case. In the former, while 
admittedly overly simplistic, we can more easily obtain 
insights into the effect of postcalibration on balancing, as 
the absolute standardized mean difference is a proper met-
ric in such scenarios of no covariance between covariates 
(see eAppendix and eFigure 9; http://links.lww.com/EDE/
C136). In the latter, the more complex ACIC data shows how 
postcalibration improves effect estimation in more realistic 
scenarios where the true underlying functional form is a 
complex nonlinear function that is not necessarily captured 
by the statistical estimator used to obtain the propensity 
scores.

Limitations notwithstanding, postcalibrating estima-
tors allow us to reconcile theory—guarantees that rely on the 
true conditional probability of exposure—and practice—as in 
applied numerical modeling from data using statistical soft-
ware. Postcalibration is a simple postprocessing procedure 
available in common statistical software, and that can be done 
on any statistical estimator. Normally, it is not computation- 
intensive, allowing us to utilize more complex models at a 
relatively small additional cost. Therefore, we conclude that 
postcalibrating propensity score models can be beneficial for 
effect estimation.
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