A discriminative approach for finding and characterizing positivity violations using decision trees

causal inference
methods

PositiviTree: A decision tree-based approach for finding easily-characterizable positivity violations.

Authors
Affiliation

Ehud Karavani

IBM Research

Peter Bak

IBM Research

Yishai Shimoni

IBM Research

Published

July 18, 2019

Doi
Abstract

The assumption of positivity in causal inference (also known as common support and co-variate overlap) is necessary to obtain valid causal estimates. Therefore, confirming it holds in a given dataset is an important first step of any causal analysis. Most common methods to date are insufficient for discovering non-positivity, as they do not scale for modern high-dimensional covariate spaces, or they cannot pinpoint the subpopulation violating positivity. To overcome these issues, we suggest to harness decision trees for detecting violations. By dividing the covariate space into mutually exclusive regions, each with maximized homogeneity of treatment groups, decision trees can be used to automatically detect subspaces violating positivity. By augmenting the method with an additional random forest model, we can quantify the robustness of the violation within each subspace. This solution is scalable and provides an interpretable characterization of the subspaces in which violations occur. We provide a visualization of the stratification rules that define each subpopulation, combined with the severity of positivity violation within it. We also provide an interactive version of the visualization that allows a deeper dive into the properties of each subspace.

A tree-based approach for finding easily-characterizable positivity violations, commonly referred to as PositiviTree.

Citation

@article{karavani2019discriminative,
  title={A discriminative approach for finding and characterizing positivity violations using decision trees},
  author={Karavani, Ehud and Bak, Peter and Shimoni, Yishai},
  journal={arXiv preprint arXiv:1907.08127},
  year={2019}
}