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B
reast cancer is the second leading cause of cancer-relat-
ed deaths and the most commonly diagnosed cancer in 

women across the world (1). Digital mammography (DM) 
is the primary imaging modality of breast cancer screening 
in women who are asymptomatic. In a diagnostic workup 
setting (2), DM has been shown to reduce breast cancer 
mortality (3). In standard clinical practice, a radiologist 
reads mammograms and classifies the findings according 
to the American College of Radiology (4) Breast Imaging 
Reporting and Data System (BI-RADS) lexicon. An abnor-
mal finding depicted at DM typically requires a diagnostic 
workup, which may include additional mammographic 
views or possibly additional imaging modalities. If a lesion is 
suspicious for cancer, further evaluation with a biopsy is rec-
ommended. Analyzing these images is challenging because 
of the subtle differences between lesions and background 
fibroglandular tissue, different lesion types, the nonrigid 

nature of the breast, and the relatively small proportion of 
cancers in a screening population of women at average risk 
(2). This leads to substantial intraobserver and interobserver 
variability (5). The average performance measures for screen-
ing mammography by a radiologist was reported by Lehman 
et al (6) to be 86.9% sensitivity and 88.9% specificity.

Breast cancer risk prediction models on the basis of clini-
cal features can help physicians estimate the probability of 
an individual or population to develop breast cancer within 
certain time frames. As a result, they are often used to recom-
mend an individual screening plan. In a systematic survey 
of risk prediction models, Meads et al (7) reported a lim-
ited performance when applied to general populations (area 
under the receiver operating characteristic curve [AUC], 
0.67; 95% confidence interval [CI]: 0.65, 0.68), and 
showed improved results when applied to high-risk popula-
tions (AUC, 0.76; 95% CI: 0.70, 0.82).
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Background: Computational models on the basis of deep neural networks are increasingly used to analyze health care data. However, 
the efficacy of traditional computational models in radiology is a matter of debate.

Purpose: To evaluate the accuracy and efficiency of a combined machine and deep learning approach for early breast cancer detec-
tion applied to a linked set of digital mammography images and electronic health records.

Materials and Methods: In this retrospective study, 52 936 images were collected in 13 234 women who underwent at least one 
mammogram between 2013 and 2017, and who had health records for at least 1 year before undergoing mammography. The algo-
rithm was trained on 9611 mammograms and health records of women to make two breast cancer predictions: to predict biopsy 
malignancy and to differentiate normal from abnormal screening examinations. The study estimated the association of features with 
outcomes by using t test and Fisher exact test. The model comparisons were performed with a 95% confidence interval (CI) or by 
using the DeLong test.

Results: The resulting algorithm was validated in 1055 women and tested in 2548 women (mean age, 55 years 6 10 [standard 
deviation]). In the test set, the algorithm identified 34 of 71 (48%) false-negative findings on mammograms. For the malignancy 
prediction objective, the algorithm obtained an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 
0.93), with specificity of 77.3% (95% CI: 69.2%, 85.4%) at a sensitivity of 87%. When trained on clinical data alone, the model 
performed significantly better than the Gail model (AUC, 0.78 vs 0.54, respectively; P , .004).

Conclusion: The algorithm, which combined machine-learning and deep-learning approaches, can be applied to assess breast cancer 
at a level comparable to radiologists and has the potential to substantially reduce missed diagnoses of breast cancer.
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common foreign bodies (eg, clips, markers, and pacemakers), 
and theses constituted 14.0% of our cohort (1848 of 13 214). 
We excluded women with a history of breast cancer, previous 
breast operations (eg, lumpectomy and mammoplasty), previ-
ous radiation therapy in the breast, chemotherapy, implants, 
and mammograms on which the biopsy side was undeter-
mined. Studies that were BI-RADS category 1–2 without 2 
years of normal follow-ups were also excluded (Fig 1).

For each woman, we considered the first DM examination 
during our study period as the index examination if it met the 
inclusion and exclusion criteria. The model used clinical data 
before the index mammogram (Appendix E1 [online]).

We split the data set into three nonoverlapping sets: 73% 
training (9611 women with 38 444 images), 8% valida-
tion (1055 women with 4220 images), and 19% test (2548 
women with 10 192 images). The breakdown into subcohorts 
is summarized in Table E1 (online). A false-negative interpre-
tation by a radiologist was defined as an index mammogram 
that was read as either BI-RADS categories 1 or 2 and sub-
sequently found to have a malignant breast lesion within 12 
months from the index mammogram.

Outcome Definitions
Our study focused on evaluating two clinical objectives for 
DM screening by using an ML-DL model:

Objective 1, prediction of malignancy (evidenced by biopsy 
positive for cancer): Women were considered to have cancer if 
the Maccabi Health Services registry and pathologic database 
indicated the diagnosis of breast cancer by biopsy within 12 
months from the index examination. Examinations that were 
considered positive for cancer comprised any pathologic speci-
mens for cancer including ductal carcinoma in situ. All other ex-
aminations were considered negative for cancer including biopsy 
examinations negative for cancer.

Objective 2, identification of normal DM examinations: A 
normal DM examination was defined as a BI-RADS category 
1–2 on a mammogram with normal follow-up examinations 
for at least 2 years after the index examination. Benign and ma-
lignant biopsies and BI-RADS category 3 were not considered 
normal examinations. BI-RADS category 1–2 on mammograms 
with insufficient follow-up period were excluded.

Of note, the two objectives are not the exact inverse of each 
other because biopsies negative for cancer and BI-RADS cat-
egory 3 examinations were always part of the complementary 
outcome.

The results were reported for each breast to better facilitate a 
comparison with other models that evaluated their performance 
per breast. The results were also determined at the individual 
woman level to allow a comparison with the clinical setting.

Development of the ML-DL Model
We created an ML-DL model that combined a set of algo-
rithms to achieve the two listed prediction objectives. For each 
woman, the input was the DM standard four-view images and 
the detailed clinical histories (Fig 2, A).

First, we used XGBoost (17) (version 0.81; https://xgboost.ai), 
an open-source Python implementation of gradient boosting 

Abbreviations
AUC = area under the receiver operating characteristic curve, BI-RADS =  
Breast Imaging Reporting and Data System, CI = confidence interval, 
DL = deep learning, DM = digital mammography, ML = machine 
learning

Summary
A deep learning algorithm trained on a linked data set of mammo-
grams and electronic health records achieved breast cancer detection 
accuracy comparable to radiologists as defined by the Breast Cancer 
Surveillance Consortium benchmark for screening digital mammog-
raphy and revealed additional clinical risk features.

Key Points
 n A deep learning algorithm predicted breast malignancy detected 

within 12 months from the index examination (area under the 
receiver operating curve [AUC], 0.91; specificity of 77.3% at a 
sensitivity of 87%).

 n The algorithm identified breast cancer in 34 of 71 (48%) women 
in whom the initial radiologist interpretation was negative for can-
cer but in whom cancer was detected within a year.

 n The deep learning algorithm improved risk prediction over the 
Gail model (AUC, 0.78 vs 0.54, respectively; P , .004).

 n The deep learning algorithm identified white blood cell profiles 
and thyroid function tests as associated with breast cancer despite 
that these factors are not currently integrated in published risk 
scores.

Machine learning (ML) and its subdiscipline, deep learning 
(DL), have recently obtained good results in the health care 
domain (8–13). Although DL-based models are increasingly 
used to analyze health care data, the efficacy of traditional com-
puter-aided detection systems is still controversial (14–16).

We hypothesized that a model combining ML and DL (here-
after, ML-DL model) can be applied to assess breast cancer at 
a level comparable to radiologists and therefore be accepted in 
clinical practice as a second reader. The purpose of our study 
was to evaluate the performance of an ML-DL model for early 
breast cancer prediction when applied to a large linked data set 
of detailed electronic health records and digital mammography.

Materials and Methods
This retrospective study was approved by the research ethics re-
view board of Assuta Medical Centers and they waived need to 
obtain written informed consent. The data were collected and 
managed by Maccabi Health Services. The authors from Mac-
cabi Health Services and Assuta Medical Centers (E.H., G.K., 
V.S., and M.G.) obtained the approval for the retrospective study 
and the anonymization process. The analysis was conducted by 
all other authors who were employees at IBM at the time of the 
study. The IBM code is provided at https://www.research.ibm.
com/haifa/dept/imt/dl-breastcancer/dl-breastcancer-login.shtml.

Study Design and Patient Eligibility
The cohort was composed of women who underwent at least 
one DM examination between 2013 and 2017 in one of the 
five Assuta Medical Centers imaging facilities and had at least 
1 year of clinical history in Maccabi Health Services before un-
dergoing DM. We did not exclude images on which there were 
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objectives and the entire set of clinical features (Fig 
2, D). The final probability for either a biopsy posi-
tive for cancer or so-called normal identification 
was estimated by using XGBoost (Fig 2, E). When 
analyzed at the individual woman level, we assigned 
the higher probability of the two values obtained 
by the ML-DL model for the breast level, similar 
to clinical practice. To view the areas on the image 
that were suspicious for cancer, we used the tech-
nique developed by Fong and Vedaldi (19), which 
identified the smallest continuous areas in the input 
image that contributed the most to the malignancy 
prediction by the ML-DL model.

Statistical Analysis
We used Fisher exact test and Student t test to esti-
mate the univariate association of features with the 
cancer-positive biopsy outcome. We corrected for 
multiple hypotheses by employing the Bonferroni 
correction. The significance of the differences be-
tween AUCs was estimated by using a 95% CI or 
DeLong test. A P value less than .05 was considered 
to indicate a statistically significant difference.

The percentage of women in our cohort who had 
subsequent biopsy procedures was higher than the 
actual percentage of women who underwent the pro-
cedures at Assuta Medical Centers. This occurred be-
cause the data initially transferred to us covered their 
more severe cases, which could bias the number of 
cancerous specimens in the data. This reflects neither 
their distributions at Assuta facilities nor those pre-
viously reported in the literature, specifically by the 
Breast Cancer Surveillance Consortium (6) (0.58% 
biopsy positive for cancer, 2% biopsy negative for 
cancer). We used a bootstrapping approach to coun-
teract the potential effect of this bias on the model’s 
performance. This adjustment was essential to main-
tain real-world distributions for the data, especially 
when the mammographic examinations with benign 
results are considered part of the opposite label in 

both prediction objectives. We sampled with replacement a pro-
portional number of women with normal, benign, and malignant 
results on mammograms according to the proportions of individ-
uals in the Breast Cancer Surveillance Consortium and calculated 
the corresponding AUC. We repeated this process 1000 times to 
obtain a mean AUC and a 95% CI (20). The percentages of ma-
lignant and benign mammography for individuals in the literature 
are reported per population. We estimated that the prevalence of 
biopsies positive and negative for cancer per breast is roughly half 
of the one reported for individuals (6).

Results

Study Population
The training set consisted of data for 9611 women (mean age, 
56 years 6 10 [standard deviation]; body mass index of 26.9 kg/
m2 6 5.4 (Table 1). In the training set, 1049 women (10.9%) 

machines classifier, to identify a subset of the clinical features 
showing the greatest contribution to prediction of a biopsy posi-
tive for cancer (Fig 2, B). These were fused into a deep neural 
network and trained on each DM image for each of the predic-
tion objectives (Appendix E1; Tables E2, E3 [online]). For ro-
bustness, we trained the deep neural network algorithm on three 
random 80% partitions of the training set, with and without 
the subset of clinical features; this resulted in six algorithms for 
each objective (Fig 2, C), which were then used as an ensemble 
average for each objective. After this step, we extracted features 
from the last fully connected layer and the estimated probability 
for both objectives from the deep neural network (18) ensemble 
for each image. We then combined those imaging features with 
the entire set of clinical features. Therefore, the probability of 
cancer at the breast level was acquired from a feature set com-
posed of imaging features obtained from both views of the breast 
(craniocaudal and mediolateral oblique) for both prediction 

Figure 1: Flowchart of study inclusion and exclusion on the basis of the Strength-
ening Reporting of Observational Studies in Epidemiology (known as STROBE). BC 
= breast cancer, BI-RADS = Breast Imaging Reporting and Data System, DM = digi-
tal mammography, w/o = without.
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Women with biopsies positive for cancer tended to be older 
than those without biopsies positive for cancer (mean age, 59 vs 
55 years, respectively; Bonferroni adjusted P , .001; Table 2). 
They had higher body mass index (last measured mean, 27.5 kg/
m2 vs 26.8 kg/m2, respectively; P , .003), and had more indica-
tions of symptoms (lump, nipple retraction, or discharge; 516 of 
1449 with indications vs 1532 of 11 765, respectively; P , .004). 
Women with a biopsy positive for cancer also tended to have a 
lower number of relatives with breast cancer in general (463 of 
1149 vs 4630 of 11 765, respectively; P , .003) and first-degree 
relatives in particular (281 of 1149 vs 3329 of 11 765, respectively; 
P , .001). This is opposite of what is generally expected, and 
serves to further indicate the need to adjust for bias in the data. 
Please see a complete list of features association with the outcome 
of biopsy positive for cancer in Table E6 (online). Table E7 (on-
line) lists the same association for first-examination individuals.

Testing of the ML-DL Model
We evaluated the two prediction objectives in the test sam-
ple of the following four cohorts: (a) the general cohort (the 
entire test sample); (b) exclusion of findings suspicious for 
cancer that only appeared on US images: a subcohort of the 
test sample, in which women with findings suspicious for 
cancer that were detected only on US images with no evi-
dence on mammograms were excluded (final BI-RADS cat-

had a biopsy positive for cancer within 1 year from their index 
examination, 1903 (19.8%) had a biopsy negative for cancer, 
247 (2.6%) were assigned BI-RADS category 3 without a sub-
sequent biopsy, and 6412 (66.7%) had consistently normal (BI-
RADS category 1–2) mammography for at least 2 years. The 
data set put aside for testing consisted of 2548 women (mean 
age, 55 years 6 10; body mass index, 26.8 kg/m2 6 5.3). Of 
this set, 289 women (11.3%) had a biopsy positive for cancer, 
501 (19.7%) had a biopsy negative for cancer, 70 (2.7%) were 
assigned BI-RADS category 3 without a subsequent biopsy, and 
1688 (66.2%) had normal examinations (validation set is in 
Table 1; statistics by BI-RADS are in Tables E4, E5 [online]).

A total of 102 of 13 234 women (0.8%) had false-negative 
findings on mammograms as read by radiologists. To analyze 
our model’s success in identifying those examinations, we elim-
inated them from the training set. Instead, we inserted these 
mammograms into the validation and test sets: 31 of 102 were 
added to the validation set (to determine the sensitivity opera-
tion point threshold) and 71 of 102 were added to the test set 
(to reflect their existence in real-world settings).

We integrated each woman’s clinical data with the image 
information (data source in Appendix E1 [online]). For each 
woman in the linked data set, we extracted all of the 1343 avail-
able clinical features, including clinical features previously recog-
nized as risk factors for breast cancer (7).

Figure 2: Outline of machine- and deep-learning model. A, Input is standard four-view mammograms and clinical 
data (1343 features). B, Selection of top clinical features for deep neural network by using the XGBoost algorithm. C, 
Ensemble of deep neural network (DNN) algorithms trained separately for each prediction objective (objective 1, biopsy 
positive for cancer; objective 2, normal examination identification) per image either with or without the subset of clinical 
features. D, A woman's side is represented by a feature set composed of the imaging features obtained from both views 
of the breast (craniocaudal [CC] and mediolateral oblique [MLO]) for both prediction objectives (Obj) and joined with 
the entire set of clinical features. E, Predicted probability of outcome (Pr) per objective and per side is obtained by train-
ing an XGBoost algorithm on the vector formed in D. L = left, R = right.
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The results were analyzed at the breast level (Table 3, Fig 3) 
and individual level (Table E8 [online]). The following results 
refer to the breast level.

Overall, the ML-DL models that combined information 
from both images and clinical data performed better than the 
ML-DL models trained by using images or clinical data alone. 

egories: DM, 1–2; US, 3). Because our model was trained 
on DM images alone, testing our model on this subcohort 
seemed appropriate; (c) first examination only, a subcohort 
limited to the first DM in a woman; and (d) first examina-
tion and by excluding findings suspicious for cancer that 
only appeared at US.

Table 1: Women’s Characteristics in Training, Validation, and Test Sets

Characteristic Training Set Validation Set Test Set

No. of women 9611 1055 2548

Age (y)* 56 6 10 55 6 10 55 6 10

Body mass index* 26.9 6 5.4 27 6 5.5 26.8 6 5.3

Age first menstruation* 13 6 1 13 6 1 13 6 1

Postmenopause 3109 (32.4) 348 (33.0) 766 (30.0)

1-year outcome

Biopsy positive for cancer 1049 (10.9) 111 (10.5) 289 (11.3)

Biopsy negative for cancer 1903 (19.8) 192 (18.2) 501 (19.7)

BI-RADS category 3† 247 (2.6) 25 (2.4) 70 (2.8)

Normal examination‡ 6412 (66.7) 727 (68.9) 1688 (66.3)

Note.—Unless otherwise indicated, data are numbers of women and data in parentheses are percentages. 
Because the machine learning–deep learning model made use of the standard four-view images, we used 
four images per woman. BI-RADS = Breast Imaging and Data Reporting System.

* Data are means 6 standard deviation.
† BI-RADS category 3 found at examination and no subsequent biopsy procedure within 1 year.
‡ Normal examinations are index test examinations with final BI-RADS category of 1–2 with at least 1 
years of normal follow-up examinations.

Table 2: Association of Features of Interest with Biopsy Positive for Cancer

Parameter No. of Women
Women with Biopsy  
Positive for Cancer

Women with Normal  
or Negative Biopsy

Adjusted  
P Value

Age 13 214 (100) 59 6 13 55 6 10 ,.001

Most recent body mass index 12 839 (97.2) 27.5 6 5.5 26.8 6 5.4 ,.003

Age at first menstruation 10 524 (79.6) 13 6 1 13 6 1 ..99

Postmenopause 2885 (21.8) 405 6 28 2480 6 21 ,.004

Breast radiology history

Previous BI-RADS breast density . 2 2699 (20.4) 211 6 15 2488 6 21 ,.001

Previous benign breast disease 1611 (12.2) 107 6 7 1504 6 13 ,.003

No. of previous breast imaging examinations 6735 (51.0) 0.55 6 0.71 0.63 6 0.69 ,.005

Family history

 First-degree family member with breast cancer 3610 (27.3) 281 6 19 3329 6 28 ,.001

 Any family member with breast cancer 5093 (38.5) 463 6 32 4630 6 39 ,.003

 Any family member with ovarian or breast cancer 5279 (40.0) 488 6 34 4791 6 41 ,.001

Medications

 Past use of fertility hormones 1228 (9.3) 100 6 7 1128 6 10 ,.05

 Past or present use of progesterone 4089 (31.0) 359 6 25 3730 6 32 ,.003

Symptoms

 Current symptom (ie, palpable lump, nipple  
  retraction, or discharge)

2048 (15.5) 516 6 36 1532 6 13 ,.004

 Past symptom 2109 (16.0) 115 6 8 1994 6 17 ,.001

 Current lump detected by doctor 1821 (13.8) 451 6 31 1370 6 12 ,.009

 Past lump detected by doctor 1943 (14.7) 101 6 7 1842 6 16 ,.001

Note.—Data in parentheses are percentages. Mean data are 6 standard deviation. Complete list of features for the general cohort may be 
found in Table E6, for first-examination individuals in Table E7 (online). P value is Bonferroni adjusted by the number of features. P values less 
than .05 are considered to indicate statistical significance. BI-RADS = Breast Imaging Reporting and Data System.
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(95% CI: 0.75, 0.81). By adding clinical features to the im-
age-based features in the ML-DL model, the AUC improved 
by 3.2%, and the specificity by 6.7% at sensitivity of 87%. 
Because the model’s output is a probability and not a final 

For the objective of predicting malignancy in the general co-
hort, the ML-DL model achieved an AUC of 0.91 (95% CI: 
0.89, 0.93). Images alone achieved an AUC of 0.88 (95% CI: 
0.86, 0.90), and clinical data alone achieved an AUC of 0.78 

Table 3: Results of the Prediction Objectives Compared with Deep-Learning Models on the Breast Level

Prediction Objective AUC*
Specificity with Sensitivity  
of 87%†

Specificity with Sensitivity 
of 80%†

Objective 1, prediction of malignancy

 General cohort

  All features 0.91 (0.89, 0.93) 3139/4061 (77.3)[69.2, 85.4] 3537/4061 (87.1) [81.5, 
92.7]

  DM images only 0.88 (0.86, 0.90) 2835/4061 (69.8) [59.3, 80.3] 3314/4061 (81.6) [74.5, 
88.7]

  Clinical only 0.78 (0.75, 0.81) 1888/4061 (46.5) [38.5, 54.5] 2392/4061 (58.9) [50.9, 
66.9]

  Excluding US-only suspicious findings subcohort

  All features 0.94 (0.93, 0.95) 3196/3691 (86.6) [80.7, 92.5] 3444/3691 (93.3) [89.3, 
97.3]

  DM images only 0.91 (0.89, 0.93) 2942/3691 (79.7) [78.7, 80.8] 3296/3691 (89.3) [85.9, 
92.7]

  Clinical only 0.81 (0.78, 0.84) 1923/3691 (52.1) [45.4, 58.8] 2399/3691 (65) [55.4, 
74.6]

 First examination subcohort

  All features 0.94 (0.93, 0.95) 1055/1213 (87) [82.7, 91.3] 1132/1213 (93.3) [90.0, 
96.6]

  DM images only 0.93 (0.91, 0.95) 1008/1213 (83.1) [76.8, 89.4] 1095/1213 (90.3) [87.4, 
93.2]

  Clinical only 0.85 (0.82, 0.88) 787/1213 (64.9) [53.2, 76.6] 929/1213 (76.6) [70.1, 
83.1]

  First examination and excluding findings  
  suspicious for cancer at US only subcohort

  All features 0.96 (0.95, 0.97) 979/1047 (93.5) [90.4, 96.6] 1020/1047 (97.4) [95.7, 
99.1]

  DM images only 0.95 (0.94, 0.96) 951/1047 (90.8) [87.3, 94.3] 997/1047 (95.2) [93.6, 
96.8]

  Clinical only 0.86 (0.84, 0.88) 689/1047 (65.8) [57.5, 74.1] 805/1047 (76.9) [70.5, 
83.3]

 Breast Cancer Surveillance Consortium radiologists 89

  DREAM model 0.87 81‡

Objective 2, identification of normal DM examinations

 General cohort

  All features 0.85 (0.84, 0.86) 648/1016 (63.8) [60.8, 66.8] 754/1016 (74.2) [71.1, 
77.3]

  DM images only 0.80 (0.79, 0.81) 555/1016 (54.6) [51.5, 57.7] 650/1016 (64)  
[61.6, 66.4]

  Clinical only 0.80 (0.79, 0.81) 533/1016 (52.5) [48.5, 56.5] 656/1016 (64.6) [62.6, 
66.6]

  Subcohort excluding findings suspicious for cancer  
  found at US only

  All features 0.85 (0.84, 0.86) 374/597 (62.6) [58.2, 67.0] 439/597 (73.5) [71.1, 
75.9]

  DM images only 0.79 (0.78, 0.80) 304/597 (51) [47.9, 54.1] 367/597 (61.4) [58.7, 
64.1]

  Clinical only 0.78 (0.77, 0.79) 252/597 (42.2) [36.4, 48.0] 346/597 (58)  
[55.0. 61.0]

Table 3 (continues)
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DM examination (AUCs, 0.94 [95% CI: 0.93, 0.95], 0.93 
[95% CI: 0.91, 0.95], and 0.85 [95% CI: 0.82, 0.88], respec-
tively), and in a cohort that combined the two constraints, ex-
cluding findings suspicious for cancer that only appeared on 
US images and by focusing on first-examination individuals, 
results were AUC of 0.96 (95% CI: 0.95, 0.97), 0.95 (95% 
CI: 0.94, 0.96), and 0.86 (95% CI: 0.83, 0.89), respectively.

For the objective of a so-called normal examination differ-
entiation, the ML-DL model achieved an AUC of 0.85 (95% 
CI: 0.84, 0.86) by using both images and clinical information, 
0.80 (95% CI: 0.79, 0.81) by using images, and 0.80 (95% 
CI: 0.79, 0.81) by using clinical information alone. By focus-
ing on women undergoing their first DM examination, our 
results improved (0.88 [95% CI: 0.87, 0.89], 0.84 [95% CI: 
0.83, 0.85], and 0.85 [95% CI: 0.84, 0.86], respectively). In 
the subcohort that excluded findings suspicious for malignancy 
found at US and the additional subcohort that included first-
examination individuals, the ML-DL model’s performance 
was reduced (0.85 [95% CI: 0.84, 0.86], 0.79 [95% CI: 0.78, 
0.80], and 0.78 [95% CI: 0.77, 0.79], respectively). Adding 
clinical features in addition to image-based features improved 
the AUC obtained by the ML-DL model by 6.8%, and speci-
ficity (at sensitivity of 87%) by up to 16.8%. By using an op-
eration point with high sensitivity (99%), the specificity was 
22% (497 of 2259; 95% CI: 15%, 29%).

Figure 5 shows, in descending order, the top 15 clinical fea-
tures that had the most influence on positive biopsy prediction 
and normal differentiation on the general test cohort (Fig 5, A, B,  
respectively), and for first-examination individuals (Fig 5, C, 
D, respectively). Please see Appendix E1 (online) for feature 

decision, we set a threshold for a final decision by choosing 
an operation point of 87% sensitivity on the validation set, 
consistent with the average radiologist operation point from 
the literature (6). On the basis of images and clinical data, the 
ML-DL model correctly interpreted 34 of 71 (48%) mammo-
graphic examinations in women with false-negative findings 
interpreted by radiologists in the test set. Without clinical data, 
the ML-DL model correctly read 32 of 71 (45%) false-nega-
tive findings on mammograms. By using a second operation 
point of 99% specificity, the sensitivity of the ML-DL model 
was 52% (187 of 360; 95% CI: 47%, 57%) and it correctly 
interpreted 11 of 71 (15%) false-negative findings on mam-
mograms in the test set. Without the clinical data, the ML-DL 
model correctly read eight of 71 (11%) false-negative findings 
on mammograms in 87% sensitivity operation point. To detect 
the areas in the image that the model found most suspicious for 
malignancy, we employed a technique developed by Fong and 
Vedaldi (19). Figure 4 and Figure E1 (online) show examples 
for index examinations that had false-negative interpretations 
by radiologists but were detected by the ML-DL model for the 
operation point at 87% sensitivity. The identified areas suspi-
cious for malignancy were verified by expert breast radiologists 
in a retrospective analysis on the basis of follow-up images and 
reports. In the subcohort that excluded findings suspicious for 
cancer that only appeared on US images, the ML-DL model 
performed better (AUCs, 0.94 [95% CI: 0.93, 0.95], 0.91 
[95% CI: 0.89, 0.93], and 0.81 [95% CI: 0.78, 0.84] by using 
combined images and clinical data, images only, and clinical 
only data, respectively). Performance was similar for the sub-
cohort focusing on individuals who were undergoing their first 

Table 3 (continued): Results of the Prediction Objectives Compared with Deep-Learning Models on the Breast Level

Prediction Objective AUC*
Specificity with Sensitivity  
of 87%†

Specificity with Sensitivity 
of 80%†

 First examination subcohort

  All features 0.88 (0.87, 0.89) 341/472 (72.3) [70.6, 74.0] 372/472 (78.8) [77.5,

  DM images only 0.84 (0.83, 0.85) 297/472 (62.9) [60.4, 65.4] 339/472 (71.8) [69.3,            
74.3]

  Clinical only 0.85 (0.84, 0.86) 313/472 (66.4) [64.5, 68.3] 346/472 (73.4) [71.1, 
75.7]

  First examination and subcohort excluding findings  
  suspicious for cancer found at US only

  All features 0.88 (0.87, 0.89) 210/289 (72.6) [69.4, 75.8] 230/289 (79.6) [77.1, 
82.1]

  DM images only 0.83 (0.82, 0.84) 163/289 (56.5) [52.0, 61.0] 196/289 (67.8) [65.0, 
70.6]

  Clinical only 0.83 (0.82, 0.84) 188/289 (65.2) [64.1, 66.3] 207/289 (71.7) [69.7, 
73.7]

  Normal identification with deep learning§ 0.61 20‡ 30‡

Note.—Unless otherwise indicated, data are numerator/denominator. Individual level results are reported in Table E8 (online). AUC = area 
under the receiver operating characteristic curve, The excluding US-only suspicious findings subcohort excluded examinations in which the 
digital mammography final BI-RADS assessment was 1 or 2 and the US final BI-RADS assessment was 3 or higher. DREAM = Dialogue 
for Reverse Engineering Assessments and Methods, DM = digital mammography.

* Data in parentheses are 95% confidence intervals.
† Data in parentheses are percentages; data in brackets are 95% confidence intervals.
§ Results were previously obtained by Geras et al (32).
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Integrating imaging and clinical information in our ML-
DL model achieved an AUC of 0.91 (95% CI: 0.89, 0.93) 
with 77.3% specificity at 87% sensitivity for prediction of 
biopsy positive for cancer, and an AUC of 0.85 (95% CI: 
0.84, 0.86) on the identification of normal examinations. 
In the subcohort where radiologists’ final BI-RADS assess-
ment could be estimated by using DM alone, without the 
assistance of US, the performance was better for malignancy 
prediction. Moreover, the results are well within the accept-
able range of radiologists at screening DM as described by 
the Breast Cancer Surveillance Consortium benchmark (6) 
(sensitivity 75%; and specificity, 88%–95%) for all cohorts. 
Compared with existing clinically based risk models (7), our 
prediction with clinical data alone outperformed the Gail 

contribution analysis corresponding to this figure. Table E9 
(online) reports our sensitivity analyses on subsets of clini-
cal features, including all features except those of symptoms 
that may lead to a diagnostic examination (lump, nipple dis-
charge, and nipple retraction), and all features without past 
breast density and BI-RADS (from previous radiologist re-
ports if any exist).

Discussion
The machine learning (ML)–deep learning (DL) model exhib-
its the potential to reduce the likelihood of breast cancer misdi-
agnosis. Importantly, the algorithm identified 34 of 71 (48%) 
false-negative findings missed by radiologists in an operation 
point set at 87% sensitivity.

Figure 3: Comparison of the classification performance on the two prediction objectives and four cohorts. Performance is reported on three 
sets of features (clinical data based, images based, and based on both imaging and clinical features). The magenta rectangle (A, B) for the malig-
nancy prediction objective corresponds to the American benchmark for the acceptable range of screening digital mammography. The red squares 
(A–D) represent the machine learning–deep learning model’s specificity at sensitivity of 80% and 87%. A, Results of the malignancy prediction 
objective in the general cohort (complete test set). B, Results of the malignancy prediction objective in the subcohort that excluded women with find-
ings suspicious for cancer that only appeared on US images (ie, excluding examinations in which digital mammography depicted Breast Imaging 
Reporting and Data System [BI-RADS] category 1–2 and US depicted BI-RADS 3 lesions). C, Results of the normal examinations identification 
objective in the general cohort (complete test set). D, Results for the normal examinations identification objective in the subcohort that excluded find-
ings suspicious for cancer that only appeared on US images. AUC = area under the receiver operating characteristic curve.
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without clinical information and then with a limited set of 
features. The winning team obtained an AUC of 0.87, and 
specificity of 81% at a sensitivity of 80% (31). Another large 
study used 103 000 images from 23 000 examinations (32) 
and focused on breast cancer screening with BI-RADS cat-
egories 0, 1, or 2, corresponding to examinations that are in-
complete, normal, or with benign findings.

Risk prediction models may further improve, by consider-
ing genetic information, hormone measurements, and breast 
density (33). Indeed, several studies have already shown sig-
nificant improvement by adding breast density (34,35). Wu 
et al (36) used Gail features with and without mined mam-
mographic features by employing a logistic regression-based 
model that resulted in an AUC of 0.71 versus 0.60, respec-
tively. This, however, relied on the radiologist’s analysis and 
interpretation of the index DM.

Our study had limitations. In our general cohort, we re-
ported a lower number of relatives in breast cancer family his-
tory of women with biopsy positive for cancer. This could be 
explained by the exclusion of women with a personal history 
of breast cancer from the cohort. This exclusion only affected 
the number of women with family history that were found 
to have a biopsy positive for cancer, without affecting the 
number of women without a biopsy positive for cancer. We 
expect this counter-intuitive finding to be present in other 
studies excluding breast cancer survivors. One approach for 

model (21). Because DL algorithms often lack interpretabil-
ity, combining DL with clinical data can shed light on the 
results obtained. First, by offering a careful cohort selection, 
we can avoid or adjust for biases. Second, by using clini-
cally centered features, physicians may be able to transcend 
correlation-based predictions into causal networks of clini-
cal factors leading to a diagnosis.

Our results regarding identification of highly probable 
healthy individuals by using only clinical information show the 
potential for personalized screening methods by training ML al-
gorithms on readily available rich clinical data.

Previous studies have applied ML and DL of breast cancer 
to relatively small sets, typically less than 2500 individuals, 
on the basis of subsets of the Digital Database for Screening 
Mammography data set, INBreast data set, or Benchmark-
ing Data sets for Breast Cancer (22–24). Some studies re-
port results on full images (25–27), whereas others focus on 
region-of-interest patch classification (28–30). Recently, the 
digital mammography Dialogue for Reverse Engineering As-
sessments and Methods Dialogue for Reverse Engineering As-
sessments and Methods (known as DREAM) challenge (31) 
provided, to our knowledge, the largest existing DM data set 
confirmed with tissue diagnosis, consisting of 86 000 individ-
uals. Their objective was to develop an automatic algorithm 
for breast cancer screening classification wherein only global 
information of biopsies positive for cancer was provided, first 

Figure 4: Images in a 64-year-old woman show prediction of malignancy in an examination interpreted as false-negative findings. A, At routine 
mammography, cysts and a solid mass in the left breast were reported as unchanged from an examination preformed 2 years earlier. In her right 
breast, small microcalcifications at the lower inner quadrant were not reported. B, The machine learning–deep learning model classification, as 
viewed by the technique by Fong and Vedaldi (19); the heat-map color ranged from blue (not suspicious for cancer) to red (highly suspicious for 
cancer). C, A 0.8-cm lesion at 12 o'clock (arrows on images in left [L] breast) was depicted at a short follow-up examination 6 months later be-
cause of nipple discharge. The lesion was interpreted as BI-RADS category 3 and the pathologic result was invasive ductal carcinoma. Six months 
after the diagnosis in her left breast, the microcalcifications in her right (R) breast were found to be ductal carcinoma in situ with a small invasive 
ductal carcinoma. CC = craniocaudal, MLO = mediolateral oblique.
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use one mammography vendor (Hologic, Bedford, Mass); 
the clinical data originated exclusively from Maccabi Health 
Services facilities. Therefore, these results must be validated 
across different vendors, facilities, and populations around 
the world. Variability in the clinical data available in different 
facilities is expected, but the fact that we identified highest-
contributing features for each prediction objective should 

correcting this selection bias is to limit the cohort to women 
undergoing their first mammographic examination, render-
ing this exclusion criterion moot. Consequently, we reported 
our results for first-examination subcohorts in addition to 
the general cohort, in which the selection bias was corrected, 
and we obtained improved results. The model was trained by 
using images from Assuta Medical Centers facilities, which 

Figure 5: Clinical features contribution. The features are ordered on the y-axis in a descending order according to their mean absolute impact 
on prediction of biopsy positive for cancer. Each dot represents the Shapley additive explanations (SHAP) value for a specific feature and a spe-
cific woman. SHAP algorithm takes into account all possible combinations of features with and without that specific feature to evaluate its contribu-
tion to the prediction. The farther a dot is from 0 on the x-axis, the more effect (positive or negative) this feature had on the machine learning–deep 
learning model output for this particular woman. A dot’s color indicates the feature’s original value using a color bar between low (blue) and high 
(magenta) values; missing data are gray. The color scale was calculated for each feature separately on the basis of the women’s feature values. 
Values that were higher than the 95th percentile and lower than the 5th percentile were trimmed. A, Top 15 highest contributing clinical features 
for prediction of biopsy positive for cancer as evaluated in the entire sample set. B, Top 15 highest contributing clinical features for normal exami-
nation identification in the entire sample set. C, Top 15 highest contributing clinical features for prediction of biopsy positive for cancer in the test 
set of the subcohort of first examinations only. D, Top 15 highest contributing clinical features for normal examination identification in the test set 
of the subcohort of first examinations only. AST = aspartate aminotransferase, BI-RADS = Breast Imaging Reporting and Data System, DM = digital 
mammography, HRT = hormone replacement therapy, Hx = history, TSH = thyroid-stimulating hormone.
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help reproduce these results in other facilities. Because of the 
process by which data were transferred from Maccabi Health 
Services, many women were excluded on the basis of a single 
nonmalignant DM examination without sufficient follow-up 
to determine that their results are without suspicious lesions 
that require further diagnostic workup. On the other hand, 
many women with benign findings were introduced into the 
cohort. We addressed this issue by sampling cohort members 
on the basis of their real-world distribution. The distinction 
between screening and diagnostic studies at Assuta Medical 
Centers was not well defined; we addressed this by analyzing 
only the standard views available at screening examinations. 
Finally, our ability to fully understand the ML-DL malig-
nancy detection capabilities was complicated by two main 
factors. The ML-DL model does not yet offer a localization of 
the finding, only a global probability for the entire breast. We 
mitigated this by inferring the areas that most contributed 
to the global prediction by using the technique by Fong and 
Vedaldi (19). We currently do not have data to differentiate 
between different types of findings such as calcifications or 
mass that would help us to better analyze our results.

In conclusion, we developed a combined machine learn-
ing (ML) and deep learning (DL) model trained on a data 
set of linked mammograms and health records that im-
proved previous risk models and obtained performance in 
the acceptable range of radiologists for breast cancer screen-
ing. The model did not perform better than radiologists, it 
performed differently. In a scenario where double reading at 
screening mammography is not available, as is the case at As-
suta Medical Centers, we believe that the use of this model 
as a second reader could be beneficial. In general, the ML-
DL model does not use the same tools as those accessible to 
radiologists. For example, it does not yet incorporate com-
parisons to previous mammography as is performed by hu-
man radiologists. Another example is the use of US images, 
which is a common part of the screening process at Assuta 
Medical Centers. We believe that, in the future, incorporat-
ing these data and additional clinical data such as genetic 
information can further improve the ML-DL model’s per-
formance. ML technology emphasizes the need for linking 
data sets from multiple modalities to improve the accuracy 
of breast cancer detection and save experts’ valuable time 
on high-probability healthy individuals. In particular, this 
model’s ability to lower false-negative results by half is of 
immediate clinical relevance.
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